Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many plants are responding to increases in spring temperatures by advancing their leaf‐out and flowering times in temperate regions around the world. The magnitudes of species' sensitivities to temperature vary widely, and patterns within that variation can illuminate underlying phenological drivers related to species' life histories and local‐scale adaptations.The USA National Phenology Network (USA‐NPN) and the National Ecological Observatory Network (NEON) are two rapidly growing, taxonomically and geographically extensive phenology data resources in the USA that offer opportunities to explore emergent properties of spring phenology. Using observations of leaf‐out and flowering in temperate deciduous plant species from USA‐NPN (2009–2024) and NEON (2014–2022), we estimated species‐level flowering (n = 164) and leaf‐out (n = 136) sensitivities to temperatures of the preceding months, obtained through PRISM. We used the results to assess differences in sensitivities between the two datasets and among life history traits (e.g. introduced or native status, seasonal timing and growth habit) and to explore latitudinal patterns in sensitivity among and within species. We found significant relationships between temperature and leaf‐out phenology (2009–2024 for 109 (80%) species, ranging from −7.4 to −1.3 days/°C, and between temperature and flowering phenology for 140 (85%) species, ranging from −8.0 to −1.1 days/°C. Plant sensitivities were highly consistent among the USA‐NPN and NEON datasets, suggesting these datasets can be reasonably combined to expand the coverage of publicly available phenological data across the USA. Introduced species showed stronger sensitivity to temperature than native species for both leaf‐out (−0.8 days/°C difference) and flowering (−0.7 days/°C difference). The strongest (i.e. most negative) leaf‐out sensitivities to temperature were associated with earlier leaf‐out dates and strong flowering sensitivities. Latitudinal analyses within and across species indicate that flowering and leaf‐out sensitivities are both stronger at lower latitudes. Synthesis. Phenological ‘big data’ encompassing over 100 species across the eastern USA shows that leaf‐out and flowering occur earlier with warmer temperatures and that native species and individuals at high latitudes tend to have weaker temperature sensitivities than introduced species and more southern plants; these findings suggest adaptations within and across species to avoid leafing out and flowering under harsh environmental conditions.more » « lessFree, publicly-accessible full text available September 30, 2026
-
Phenological indices are an effective approach for assessing spatial and temporal patterns and variability in plant development. The Spring Indices (SI-x), two widely adopted phenological indices, have been used in recent decades to predict development of woody plants, and document changes in spring growth timing, especially in North America. However, these two indices (Leaf and Bloom) capture only two “moments” in the continuum of spring when quantities of thermal or photo/thermal energy, associated with seasonal events in plants, are accumulated, limiting their utility to characterize the remainder of the spring season. Further, the Spring Indices do not account for intraspecific variation, limiting their ability to reflect non-cloned plant development. To address these shortcomings, we developed a novel suite of phenological indices that encompass a broader span of the spring season. These indices were constructed using observations contributed to the USA National Phenology Network’s Nature’s Notebook platform across many non-cloned tree and shrub species’ ranges, thereby incorporating differing regional responses within species due to genetic variations. Individual species model predictions of leaf or bloom timing exhibited an average mean absolute error of 8.55 days; most were improved by the inclusion of site-specific latitude, elevation, or 30-year average temperature. Leaf and bloom model outputs for individual species across the spring season were temporally aggregated into four leaf and bloom groups to produce a suite of Spring Development Indices (SDI). Accuracy of the SDI predictionswas 0.89 days lower, on average, than the species models, but 2.65 days better than SI-x. Generally, all SDIs were highly correlated. The SDIs exhibiting the most difference from the others were Early leaf, Very Early bloom, and Late bloom. As such, these SDIs provide novel insights, beyond SI-x, into the relative timing of spring-season “moments” across species in space and time.more » « lessFree, publicly-accessible full text available January 15, 2026
-
Kenawy, Ahmed (Ed.)Observational and modeling studies indicate significant changes in the global hydroclimate in the twentieth and early twenty-first centuries due to anthropogenic climate change. In this review, we analyze the recent literature on the observed changes in hydroclimate attributable to anthropogenic forcing, the physical and biological mechanisms underlying those changes, and the advantages and limitations of current detection and attribution methods. Changes in the magnitude and spatial patterns of precipitation minus evaporation (P–E) are consistent with increased water vapor content driven by higher temperatures. While thermodynamics explains most of the observed changes, the contribution of dynamics is not yet well constrained, especially at regional and local scales, due to limitations in observations and climate models. Anthropogenic climate change has also increased the severity and likelihood of contemporaneous droughts in southwestern North America, southwestern South America, the Mediterranean, and the Caribbean. An increased frequency of extreme precipitation events and shifts in phenology has also been attributed to anthropogenic climate change. While considerable uncertainties persist on the role of plant physiology in modulating hydroclimate and vice versa, emerging evidence indicates that increased canopy water demand and longer growing seasons negate the water-saving effects from increased water-use efficiency.more » « less
-
As a common protein modification, asparagine-linked (N-linked) glycosylation has the capacity to greatly influence the biological and biophysical properties of proteins. However, the routine use of glycosylation as a strategy for engineering proteins with advantageous properties is limited by our inability to construct and screen large collections of glycoproteins for cataloguing the consequences of glycan installation. To address this challenge, we describe a combinatorial strategy termed shotgun scanning glycomutagenesis in which DNA libraries encoding all possible glycosylation site variants of a given protein are constructed and subsequently expressed in glycosylation-competent bacteria, thereby enabling rapid determination of glycosylatable sites in the protein. The resulting neoglycoproteins can be readily subjected to available high-throughput assays, making it possible to systematically investigate the structural and functional consequences of glycan conjugation along a protein backbone. The utility of this approach was demonstrated with three different acceptor proteins, namely bacterial immunity protein Im7, bovine pancreatic ribonuclease A, and human anti-HER2 single-chain Fv antibody, all of which were found to tolerate N-glycan attachment at a large number of positions and with relatively high efficiency. The stability and activity of many glycovariants was measurably altered by N-linked glycans in a manner that critically depended on the precise location of the modification. Structural models suggested that affinity was improved by creating novel interfacial contacts with a glycan at the periphery of a protein–protein interface. Importantly, we anticipate that our glycomutagenesis workflow should provide access to unexplored regions of glycoprotein structural space and to custom-made neoglycoproteins with desirable properties.more » « less
-
Abstract Climate models consistently project a significant drying in the Caribbean during climate change, and between 2013 and 2016 the region experienced the worst multiyear drought in the historical period. Although dynamical mechanisms have been proposed to explain drought in the Caribbean, the contributions from mass convergence and advection to precipitation minus evaporation ( P − E ) anomalies during drought are unknown. Here we analyze the dynamics of contemporaneous droughts in the Caribbean by decomposing the contributions of mass convergence and advection to P − E using observational and simulated data. We find that droughts arise from an anomalous subsidence over the southeastern Caribbean and northeastern South America. Although the contributions from mass convergence and advection vary across the region, it is mass convergence that is the main driver of drought in our study area. A similar dynamical pattern is observed in simulated droughts using the Community Earth System Model (CESM) Large Ensemble (LENS).more » « less
-
Abstract Plant phenology regulates the carbon cycle and land‐atmosphere coupling. Currently, climate models often disagree with observations on the seasonal cycle of vegetation growth, partially due to how spring onset is measured and simulated. Here we use both thermal and leaf area index (LAI) based indicators to characterize spring onset in CMIP6 models. Although the historical timing varies considerably across models, most agree that spring has advanced in recent decades and will continue to arrive earlier with future warming. Across the Northern Hemisphere for the periods 1950–2014, 1981–2014, and 2015–2099 in the historical and SSP5‐8.5 simulations, thermal‐based indicators estimate spring advances of −0.7 ± 0.2, −1.4 ± 0.4, and −2.4 ± 0.7 days/decade, while LAI‐based indicators estimate −0.4 ± 0.3, −0.1 ± 0.3, and −1±1.1 days/decade. Thereby, LAI‐based indicators exhibit weaker trends toward earlier onset, leading to uncertainties from different indices being as large or larger than model uncertainty. Reconciling these discrepancies is critical for understanding future changes in spring onset.more » « less
-
Abstract Evapotranspiration (ET) is a significant ecosystem flux, governing the partitioning of energy at the land surface. Understanding the seasonal pattern and magnitude ofETis critical for anticipating a range of ecosystem impacts, including drought, heat‐wave events, and plant mortality. In this study, we identified the relative controls of seasonal variability inET, and how these controls vary among ecosystems. We used overlapping AmeriFlux and PhenoCam time series at a daily timestep from 20 sites to explore these linkages (# site‐years >100), and our study area covered a broad climatological aridity gradient in the U.S. and Canada. We focused on disentangling the most important controls of bulk surface conductance (Gs) and evaporative fraction (EF = LE/[H + LE]), whereLEandHrepresent latent and sensible heat fluxes, respectively. Specifically, we investigated how vegetation phenology varied in importance relative to meteorological variables (vapor pressure deficit and antecedent precipitation) as a driver ofGsandEFusing path analysis, a framework for quantifying and comparing the causal linkages among multiple response and explanatory variables. Our results revealed that the drivers ofGsandEFseasonality varied significantly between energy‐ and water‐limited ecosystems. Specifically, precipitation had a much higher effect in water‐limited ecosystems, while seasonal patterns in canopy greenness emerged as a stronger control in energy‐limited ecosystems. Given that phenology is expected to shift under future climate, our findings provide key information for understanding and predicting how phenology may impact 21st‐century hydroclimate regimes and the surface‐energy balance.more » « less
An official website of the United States government
